
CHAPTER 5

Statistical Mechanics

5.1. Mechanics

We begin the discussion of statistical mechanics by a quick review
of standard mechanics.

Suppose we are given N particles whose position coordinates are
given by a set of scalar quantities q1, . . . , qn. In a d dimensional space
one needs d numbers to specify a location, so that n = Nd. The rate
of change of the position is

d

dt
qi = q̇i.

(This dot notation for the time derivative goes back to Newton and
makes some of the formulas below look less cluttered.) A good way to
write down the laws of motion is to specify a Lagrangian L = L(qi, q̇i, t)
and follow the steps that will now be described; this procedure can be
used for laws other than those of Newtonian mechanics as well. For
any path q(s), t0 ≤ s ≤ t, that could take the particles from their
locations at time t0 to their locations at time t, we define an “action”
by

A =

∫ t

t0

L(q(s), q̇(s), s)ds,

and we require that the motion (according to the mechanics embodied
in the Lagrangian) that takes us from q(t0) to q(t) be along a path
which is an extremal of the action. In other words, for the motion
described by the functions q(t) to obey the physics in the Lagrangian,
it has to be such that perturbing it a little, say from q(t) to q(t)+δq(t),
changes the action A =

∫ t

t0
Lds very little. We simplify the analysis

here by assuming that L does not explicitly depend on t. Then

δA = δ

∫ t

t0

L(q, q̇)ds =

∫ t

t0

(L(q + δq, q̇ + δq̇)− L(q, q̇)) ds

= 0 + O(δq2, δq̇2),
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where

L(q + δq, q̇ + δq̇) = L(qi, q̇i) +
∑

δqi
∂L
∂qi

+
∑

δq̇i
∂L
∂q̇i

+ 0(δq2, δq̇2).

By integration by parts we find

δ

∫ t

t0

L ds =

∫ t

t0

(∑
δqi

∂L
∂qi

+
∑

δq̇i
∂L
∂q̇i

+ O(δq2, δq̇2)

)
ds

=

∫ t

t0

(∑
δqi

(
∂L
∂qi

− d

dt

∂L
∂q̇i

ds

)
+ O(δq2)

)
ds.

For the path q(t) to be extremal the first term has to vanish, and we
conclude that

∂L
∂qi

− d

dt

∂L
∂q̇i

= 0,

for all i = 1, . . . , n. These are the Lagrange equations of motion.

Example. Change notation so that x = q, ẋ = q̇, and think of x as
a coordinate in a one dimensional space. Assume that a particle of mass
m at x is acted on by a force F of the form F = −∇V , where V = V (x)
is a potential. Specify the laws of motion by setting L = 1

2mẋ2−V (x).
The Lagrange equation of motion is

∂L
∂x
− d

dt

∂L
∂ẋ

= 0

or equivalently

−∂V

∂x
− d

dt
(mẋ) = 0,

which is Newton’s second law, F = mẍ.

This formalism is also useful in quantum mechanics, where the prob-
ability density of going from q(t0) to q(t) is the square of the path
integral ∫

e−2πiA/h D(q).

Here h is Planck’s constant and
∫ D(q) stands for integration over all

paths that connect q(t0) to q(t). As h→ 0 one gets back the variational
principle of the beginning of this section. Note that in the physicists’
notation for path integrals (Chapter 3), the Lagrangian appeared in
the argument of the exponential, so that modulo the insertion of the
factor 2πi/h the quantum mechanical path integral becomes a path
integral roughly in the sense of Chapter 3.



90 5. STATISTICAL MECHANICS

We shall use the equations of motion mostly in their Hamiltonian
form: Define a momentum pi conjugate to qi by pi = ∂L/∂q̇i. The
Hamiltonian function is

H =
∑

piq̇i − L,

and the equations of motion can be written as

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (5.1)

The proof that these equations are equivalent to the Lagrangian equa-
tions is just a manipulation of differentials which we leave to the reader.

Example. Let L = 1
2mẋ2 − V (x) as before, with q = x. Then

p = mẋ and

H = pq̇ − L = (mẋ)ẋ−
(

1

2
mẋ2 − V (x)

)
=

1

2

(mẋ)2

m
+ V.

The Hamiltonian equations of motion are

ẋ =
∂H

∂p
=

p

m
,

and

ṗ = m
d2x

dt2
= −∂H

∂q
= −∂V

∂x
= F.

If the Hamiltonian does not depend explicitly on time then it is a
constant during the motion; indeed,

dH

dt
=

n∑
i=1

∂H

∂pi

dpi

dt
+

n∑
i=1

∂H

∂qi

dqi

dt

=
n∑

i=1

∂H

∂pi

(
−∂H

∂qi

)
+

∂H

∂qi

∂H

∂pi

= 0.

The constant value of the Hamiltonian is the energy E of the system.
A system of equations which can be put into the form (5.1) is a Hamil-
tonian system.

5.2. Statistical Mechanics

Consider a Hamiltonian system with n degrees of freedom (q1, p1),
. . .,(qn, pn) where H does not depend explicitly on the time t. From
now on we will denote the vector of positions by q and the vector of
momenta by p so that H = H(q, p). A microscopic state of the system
(a “microstate” for short) is a set of values of the q1, . . . qn, p1, . . . , pn.
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The system evolves in a 2n-dimensional space which is denoted by
Γ and is often called the phase space. The sequence of points in Γ
that the system visits as it evolves from an initial condition is called a
trajectory.

If the system has many degrees of freedom then it is impossible to
follow its exact evolution in time, since specification of all the initial
conditions is impossible and the numerical solution of the very large
systems which arise in practice is also out of reach. So we settle for a
more modest approach. We assume that the initial data q(0), p(0) are
drawn from a probability density W . Then, instead of considering sin-
gle trajectories we look at the collection, or “ensemble”, of trajectories
that are initially distributed according to W .

As the trajectories evolve individually the probability density nat-
urally changes; let the density of microstates at time t be W (t), where
each microstate is the location of a trajectory at that time. W (t) de-
scribes the ensemble at time t; it is the “macrostate” of the ensemble.
Thus the microstate is a list of numbers, or a vector in Γ, and the
macrostate is a probability density in Γ. The set of all macrostates
corresponds to Ω, the sample state of our earlier discussion.

We now derive an equation of motion for W (t) = W (q, p, t). Con-
sider the vector u = (q̇1, . . . , ṗn). First note that its divergence is zero:

∇ · u =
n∑

i=1

∂

∂qi

(
dqi

dt

)
+

n∑
i=1

∂

∂pi

(
dpi

dt

)
=

n∑
i=1

∂

∂qi

(
∂H

∂pi

)
+

n∑
i=1

∂

∂pi

(
−∂H

∂qi

)
= 0.

This vector field can be said to be “incompressible”, in analogy with
fluid dynamics.

Consider a volume V in Γ-space and a density of systems W .
The number of microstates in V at a given time t is on the average∫

V W dq dp (where dq = dq1 . . . dqn and similarly for dp). If microstates
neither appear nor disappear, then the only change in the number of
systems in V can come from the inflow/outflow of systems across the
boundary of V . Therefore, as in fluid mechanics,

d

dt

∫
V

Wdq dp = −
∫

∂V

Wu · n ds = −
∫

V

∇ · (Wu) dV,
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where n is normal to the boundary ∂V of V . If we assume that the
density is smooth we can deduce from the above that

∂W

∂t
+∇ · (Wu) = 0, (5.2)

and, using the incompressibility of u,

∂W

∂t
+ u ·∇W = 0. (5.3)

This last equation is known as the Liouville equation. One can
define a linear differential operator (the Liouville operator)

L =
n∑

i=1

∂H

∂qi

∂

∂qi
−

n∑
i=1

∂

∂pi

∂

∂pi

and then equation (5.3) becomes

∂W

∂t
= −LW. (5.4)

This equation is linear even when the original system is not. In as
much as it is an equation for the evolution of a pdf, it is analogous to
the Fokker-Planck equation; this analogy will be pursued in the next
chapter.

Once we have the density W (t), we can define physical observables
for the ensemble, which are averages of physical quantities over the
ensemble. The energy of each microstate is the value of the Hamiltonian
H for that microstate, the energy of the ensemble is

E(t) = E[H(t)] =

∫
Γ

H(q, p)W (q, p, t)dV,

where dV is an element of volume in the phase space Γ. Similarly, if
Φ = Φ(q, p) is a property of a microstate, its macroscopic version is

Φ̄ = E[Φ] =

∫
Γ

Φ(q, p)W (q, p, t)dV.

A probability density W is an invariant if it is a stationary solution
of equation (5.2), that is, if we draw the initial data from W , solve the
equations for each initial datum, and look at the density of solutions at
some later time t, it is still the same W . In other words, sampling the
density and evolving the systems commute. We now give two examples
of invariant densities for a Hamiltonian system.

Suppose that initially W is zero outside a region V and suppose
that the system has no way of leaving V . Further suppose that W is
constant inside V . Then from equation (5.3) we conclude that W is
invariant. We apply this in the following construction. Consider in
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Γ-space a surface H = E as well as the surface H = E + ∆E. The
volume enclosed between these two surfaces is called an energy shell.
Consider the following initial density:

W (q, p) =

{
(volume of shell)−1, (q, p) ∈ shell

0, otherwise
.

Since no systems can leave the energy shell (because the energy is a
constant of the motion), this density is invariant. If we let the thickness
of the energy shell go to zero, we get a “microcanonical” density. The
surface density on the energy surface H = E need not be constant.

Suppose φ(H) is a function of H such that
∫

Γ φ(H)dqdp = 1 and
φ(H) ≥ 0. Thus W (q, p) = φ(H) is invariant. Note first that u ·∇W
vanishes. Indeed,

u ·∇W =
n∑

i=1

dqi

dt

∂W

∂qi
+

n∑
i=1

dpi

dt

∂W

∂pi

=
∂φ

∂H

(
n∑

i=1

dqi

dt

∂H

∂qi
+

n∑
i=1

dpi

dt

∂H

∂pi

)
= 0.

Therefore, from equation (5.3), ∂W/∂t = 0. In particular, one can
choose as an invariant density W (q, p) = Z−1 exp(−βH(q, p)), where
β > 0 is a constant and Z =

∫
Γ exp(−βH)dq dp. A density of this form

is called canonical.
A property of the Liouville operator that will be used later is the

following: If E[·] is the expectation with respect to a canonical density,
then

(Lu, v) = E[(Lu)v] = −E[u(Lv)] = −(u, Lv),

i.e., L is skew-symmetric. This can be checked by writing down the
definitions and integrating by parts.

5.3. Entropy and Equilibrium

Consider a probability space where Ω consists of a finite number of
points ω1, ω2, . . . ,ωn with probabilities p1, p2, . . . , pn (whose sum must
be 1). We now want to define a quantity called “entropy” on that space,
to be denoted by S. S will be a function of the pi: S = S(p1, . . . , pn)
and we will consider the case where n may vary. We want S to be a
measure of the uncertainty in the probability density and to that end
satisfy the following axioms:

(1) For each n, S is a continuous function of all its arguments.
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(2) If all the pi are equal (pi = 1/n for all i) one can define
Sn = S(1/n, . . . , 1/n) and require that Sn be a monotoni-
cally increasing function of n (the more points in Ω, the more
uncertainty if all points are equally likely).

(3) Let 1 = k0 ≤ k1 ≤ k2 ≤ · · · ≤ kM = n be a partition of
[1, n] and let qj = pkj−1 + · · · + pkj , i.e., q1 = p1 + · · · + pk1 ,
q2 = pk1+1 + · · · + pk2 , etc. Then

S(p1, . . . , pn) = S(q1, . . . , qM) +
M∑

j=1

qjS

(
pkj−1

qj
, . . . ,

pkj

qj

)
.

In other words, the uncertainty is the sum of the uncertainties
inherent in any grouping of points plus the average of the
uncertainties within each grouping.

A function S with these properties should be small if all the proba-
bility is concentrated at a few points and should become ever larger as
there is more doubt as to where an arbitrary point would lie. One can
prove that a function S that satisfies these requirements is determined
uniquely up to a multiplicative constant and is

S = −
∑

i

pi ln pi.

This is the entropy associated with the probability space we started
from. In physics one adds to this definition the multiplicative constant
k (Boltzmann’s constant). The entropy associated with a pdf f is,
similarly, S = − ∫

f(x) ln f(x)dx. The entropy is a number attached to
the pdf which measures, in the way described above, the uncertainty
implicit in the pdf.

Now consider a set of microstates (or equivalently, the sample space
for an evolving statistical mechanics system), with some reasonable σ-
algebra of events. Suppose we have measured some physical, macro-
scopic, quantities, say Φ̄1, Φ̄2, . . . Φ̄m, for some finite m. These are
averages with respect to a density W of a set of microscopic (i.e., relat-
ing to each state) quantities Φi. We now ask the question: What
pdf W compatible with these measurements (i.e., such that Φ̄i =∫

Φi(q, p)W (q, p)dV ) has maximum entropy? We now show the fol-
lowing: If there exists a vector β = (β1, . . . , βn) and a number Z > 0
such that

Wβ = Z−1 exp
(
−

∑
βiΦi(q, p)

)
is a probability density compatible with the measurements (“admissi-
ble” for short) then Wβ is the admissible density that has the largest
entropy among all admissible densities.
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The proof is as follows. It is an exercise in calculus to show that
ψ(x) = x ln x − x + 1 ≥ 0 for x ≥ 0, with equality only for x = 0.
Put x = W/Wβ in this inequality, where W is an arbitrary admissible
density. Then

−W ln W + W ln Wβ ≤ Wβ −W.

Integrate this inequality over Γ, and use the fact that both W and Wβ

are densities; this gives

−
∫

Γ

W ln WdV ≤ −
∫

Γ

W ln Wβ dV.

However, from the definition of Wβ we find that

−
∫

Γ

W ln Wβ dV = −
∫

Γ

Wβ ln Wβ dV = ln Z +
∑

βiΦ̄i

so that all the entropies of the W ’s are less than the entropy of Wβ:

S(W ) ≤ S(Wβ),

where S(W ) is the entropy associated with a density W . Furthermore,
the inequality is strict unless W = Wβ.

As an example, suppose one has a single measurement, that of E,
the energy of the ensemble, E = E[H]; then Wβ = Z−1e−βH , where
the β in the exponent is a scalar, and Z =

∫
Γ e−βHdV . The parameter

β is determined from the equation

E = E[H] =

∫
Γ

Z−1He−βHdV =
∂Z

∂β
.

With this density, the entropy is S = βE+ln Z. There is a calculation,
which we omit, producing the microcanical density in the absence of
any measurements.

It is a physical principle that the entropy of a physical system always
increases, so it is reasonable to assume that any density for a physical
system will evolve in time into one that maximizes the entropy. We
already know that a canonical density is time invariant, so the canonical
density is a good candidate for an asymptotic, invariant density, what is
called in physics a “thermal equilibrium.” This is particularly satisfying
from the point of view of statistics as well: one can show that estimates
based on partial measurements are unbiased if one assumes that the
density that gives rise to them maximizes the entropy.

The temperature T of a system is defined by the equation

T−1 = ∂S/∂E,

one can check that if the density is the canonical density above then T =
1/β (in physics there is an additional factor of k from the physicists’
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definition of entropy). Then the canonical density can be written as
W = Z−1 exp(−H/T ). For a system of N non-interacting particles,
T/N can be seen to be the variance of the velocity of each particle
divided by its mass. The canonical density has T as a fixed parameter,
and is the right density to use when the system under study allows
no exchange of mass through its walls and has walls kept at a fixed
temperature T . For the sake of simplicity, in these notes we shall
always place ourselves in this case.

One can now proceed to derive all of thermodynamics from our
definitions but we forbear to do so. We merely pause to note that the
normalization constant Z varies when T varies, and is known in physics
as the “partition function.”

Suppose F = F (q, p) is a function on Γ and suppose you want to
calculate the average of F along a trajectory of a system in thermal
equilibrium, e.g., for a system that has an invariant measure (such as
the measure defined by the canonical density). If the “ergodic prop-
erty” holds, this average equals the average of F with respect to the
invariant measure. If one can prove the ergodic property (as one very
occasionally can), or assume it holds (as one often does) then the cal-
culation of averages is greatly simplified. An example of an ergodic
system is the system where Γ is the interval [0, 1), and the equation
of motion is xn = (xn−1 + γ) mod 1 , with x0 given. One can readily
check that if γ is irrational, then the standard Lebesgue measure on
[0, 1) is invariant, and that the average of any continuous function F
defined on [0, 1) with respect to Lebegues measure equals its average
over any trajectory.

5.4. The Ising model

We now introduce the Ising model in two space dimensions, which
is widely used as a model problem in statistical mechanics. Consider
an N × N regular lattice in the plane with lattice spacing 1, and at
each node (i, j) set a variable si,j (a “spin”) that can take only one of
two values: si,j = 1 (“spin up”) or si,j = −1 (“spin down”). Make the
problem periodic, so that si+N,j = si,j and si,j+N = si,j. Associate with
this problem the Hamiltonian

H = −
∑

si,j(si+1,j + si−1,j + si,j+1 + si,j−1),

i.e., minus the sum of the products of each spin with its four nearest
neighbors. This “Hamiltonian” does not include any momenta, and
the variables take integer values only, so there is no time evolution
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associated with it and “thermal equilibrium” here is meaningful only
in the sense that the probability density we use maximizes the entropy.

The possible microstates of the system are the 2N2
ways of arranging

the up and down spins. We assign to each microstate the probability
Z−1 exp(−H/T ), where as above T is the temperature. A function of
the microstate that is of interest is the “magnetization”

µ =
1

N2

∑
i,j

si,j.

Clearly if all the spins are aligned µ = +1 or µ = −1. With the
definitions above, E[µ] = 0 because a state with a given set of values
for the spins and a state with exactly the opposite values have equal
probabilities.

The covariance function is

Cov(i′, j′) = E[si,jsi+i′,j+j′ ].

The correlation length is a number ξ such that for ‖(i′, j′)‖ =
√

i′2 + j′2 >
ξ the covariance is not significant (and we do not explain further how
big “significant” is).

One can show, and check numerically as explained below, that the
Ising model has the following properties:

(1) For T very large or very small ξ is small, of the order of 1.
There is an intermediate value Tc of T for which ξ is very
large.

(2) The behavior of the magnetization µ is very different when T <
Tc and when T > Tc. In the former case the likely values of µ
hover around two non-zero values ±µ∗; if one adds dynamics
to this problem (as we shall do with Monte-Carlo sampling in
the next section) one sees that the system is very unlikely to
move from +µ∗ to −µ∗ or vice-versa. For very large values of
N the phase space Γ separates into two mutually inaccessible
regions which correspond to µ positive and µ negative. The
averages of µ over each region then have one sign. On the
other hand, when T > Tc this separation does not occur. The
value T = Tc is a “critical value” of T and the parameter
m is an “order parameter” which can be used to detect the
partial order in which spins are aligned in each of the two
mutually inaccessible regions of Γ. As T passes from above
this value Tc to below the critical value Tc one has a “phase
transition” in which the system goes from a disordered “phase”
to a partially ordered phase. If one averages µ for T < Tc only
over the appropriate part of the phase space, one finds that
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when |T − Tc| is small, m is proportional to |Tc− T |α, where
α = 1/6 is an instance of a “critical exponent.”

5.5. Markov Chain Monte Carlo

Let φ(q, p) be a scalar function of the q’s and p’s, i.e., φ:Γ → R.
We want to compute the expectation value of φ with respect to the
canonical density:

E[φ] =

∫
Γ

φ(q, p)
e−H(q,p)/T

Z
dq dp.

The estimation of such integrals is difficult because: i) usually the
number of variables is large, ii) the partition function Z is unknown,
and iii) H(q, p) is usually very small except on a very small part of Γ,
so that without some form of importance sampling the computation
takes forever.

An excellent method for calculating such integrals is “Markov chain
Monte Carlo” or “Metropolis sampling” or “rejection sampling”, which
will now be explained. To simplify the analysis, consider a system with
a finite number of microstates S1, S2, . . . , Sn. To each microstate we
assign a value Hi = H(Si) of the Hamiltonian and a probability

Pi = P (Si) =
e−Hi/T

Z
, (5.5)

where

Z =
n∑

i=1

e−Hi/T .

Suppose φ = φ(S) is a function on the space Γ = {S1, . . . , Sn}. We
have

E[φ] =
n∑

i=1

φ(Si)Pi =
n∑

i=1

φ(Si)
e−Hi/T

Z
.

Definition. Consider a space Γ containing states S1, S2, . . . , Sn.
A time series on Γ (or a chain on Γ) is a time series X (discrete time
stochastic process, see Chapter 4) such that for each instant t, Xt =
Sj, 1 ≤ j ≤ n.

Example. Suppose the space Γ consists of the states S1, S2, S3, S4.
A sequence of states Xt = (S1, S1, S3, S2, . . .) is a time series.

Definition. The probability

P (Xt = Sj|Xt−1 = Sj1 , Xt−2 = Sj2 , . . .)
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is called the transition probability of the chain and the chain is a
Markov chain if

P (Xt = Sj|Xt−1 = Si, Xt−2 = Si2 , . . .) = P (Xt = Sj|Xt−1 = Si).

For a Markov chain we write

P (Xt = Sj|Xt−1 = Si) = pij = P (Si → Sj),

where
∑

j pij = 1 and pij ≥ 0. The matrix P with elements pij is called
the Markov matrix.

Suppose that we know P (Si → Sj) = pij. We have

P (Xt = Sj|Xt−2 = Si) =
∑

k

P (Si → Sk)P (Sk → Sj)

=
∑

k

pikpkj

which are the entries of the matrix P2. If P(2) is the matrix whose
entries are the probabilities that we go from Si to Sj in two steps, then
P(2) = P2.

Definition. A collection of states is irreducible with respect to a
chain X if given any two states Si, Sj in the collection (where we may
have i = j) there is a non-zero probability of going from Si to Sj in n
steps for some n.

Definition. A Markov chain is ergodic in Γ if all of Γ is irreducible
with respect to the chain.

Example. Consider the four state system above and let X be
the finite chain {S1, S2, S1}. For simplicity we assume that P has
all non-zero entries. In this case X is not irreducible with respect
to {S1, S2} because the transition S2 → S2 does not occur. However,
{S1, S2} is irreducible with respect to X = {S1, S2, S2, S1}. Neither
of these chains is ergodic in Γ. An example of an ergodic chain is
{S1, S2, S3, S4, S4, S3, S2, S1}.

The following theorem holds.

Theorem 5.1. If a Markov chain is ergodic in Γ then there exist
numbers πi such that πi ≥ 0,

∑
i πi = 1, and πj =

∑
i πipij.

The probabilities {πi} are the analog of an invariant density when
the system is Hamiltonian.

For the sake of simplicity we work out the next steps in the special
case of a one dimensional Ising model, in which nothing interesting
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happens and there is no phase transition. The n spins now live on a one-
dimensional lattice. The Hamiltonian H associated with a microstate
is

H = −
n∑

i=1

sisi+1,

where, as before, the domain is periodic so that si+n = si. The proba-
bility density on the space of all possible configurations is given by (5.5).
Let φ(S) be any function of the configuration S. Then φ(S) is a ran-
dom variable. Fix a specific configuration Sj. Of particular interest
is the random variable φ(S) = δj(S) defined to be 1 if S = Sj and
zero otherwise—the characteristic function of Sj . Let Xt be a Markov
stochastic process of length N with the values in the space of configu-
rations of an Ising chain. Define

∆j(N) =
1

N

N∑
t=1

δj(Xt).

Let πj be the limit of ∆j(N) as N → ∞. Then πj is the frequency
with which the chain visits configuration Sj. If the Markov chain Xt is
ergodic there exist unique numbers πj as in theorem 5.1. Additionally
in this case πj is the limit of ∆j(N) as N →∞.

Suppose we know how to find pij so that the πj = Z−1e−Hj/T are
the predetermined probabilities; then if φ(S) is any function on the
configuration space of the one dimensional Ising lattice and if Xt is
ergodic we have

1

N

N∑
t=1

φ(Xt)→ E[φ(S)].

We have to be very careful in designing the Markov chain Xt or we will
mostly do useless work.

Example. Consider a one dimensional Ising model with 4 sites.
There are 24 = 16 possible configuration of the chain; for instance, one
possible configuration (or microstate) is S = (+1,−1,−1, +1). The
possible values of the Hamiltonian are −4, 0, 4. There are two states
with H = −4 (these are the states for which all si’s are of the same
sign), 12 states with H = 0, and two states with H = 4 (the states with
alternating signs). Suppose the temperature is T = 1, then, using (5.5),
the two states with all si’s of the same sign each have probability of
about 0.45. Together they have probability 0.9 of appearing. The next
most likely state has a probability of only 0.008. The situation becomes
even more dramatic as the number of sites in the Ising lattice increases.
In general there will be a very small number of states with significant
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probabilities and a very large number of states with probabilities near
zero. Thus if we want to compute the average of some random variable
φ(S) it would not make sense to sample each site with equal frequency.
We must construct a chain which visits the sites with probability equal
to

πi =
1

Z
e−Hi/T .

The change in sampling to reach this goal is what we called importance
sampling in Chapter 2.

We construct Markov processes that accomplish importance sam-
pling in two steps. First we do something stupid, then we cleverly
improve it.

Step 1. We construct an arbitrary ergodic symmetric Markov chain (a
Markov chain is symmetric if pij = pji). For example, in the
Ising case, we start our chain with an arbitrary configuration.
At each time step we pick a number i between 1 and n with
equal probability and change the value si associated to site i
to the opposite value: si → −si.

Step 2. Suppose the Markov process defined above has transition prob-
abilities pij. We construct a modified Markov chain by defining
a new transition probabilities p∗ij.

Case i *= j. In this case

p∗ij =

{
pij

πj
πi

,
πj
πi

< 1

pij,
πj
πi
≥ 1

.

Case i = j. In this case

p∗ii = pii +
∑

pij

(
1− πj

πi

)
where the sum is over all j such that πj/πi < 1.

We claim that the modified process visits configuration Sj with prob-
ability πj. This is a consequence of the fact that

∑
j p∗ijπi = πi.

How to apply this result: Let P be the transition matrix of some
ergodic Markov process on the states {Sj}. Suppose that we are cur-
rently in the state Si. We use P to pick the next state Sj, the transition
probability of this is pij. Having picked Sj in this way we calculate the
ratio πj/πi. If πj/πi ≥ 1 we accept Sj as the new state. On the other
hand if πj/πi < 1 , then with probability πj/πi we accept Sj as the
new state , and with probability 1− πj/πi we take the old state Si to
be the new state. This procedure gives the transition probabilities p∗ij
defined above.
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A very important observation is that

πj

πi
= exp

(
−H(Sj)

T
+

H(Si)

T

)
= exp

(
−∆H

T

)
,

where ∆H is the difference in energy between the states Si and Sj.
Note that Z is never needed.

This construction is easy to program and quite efficient in general.
The exception is in more than one space dimension for T near the crit-
ical value Tc. The problem is as follows: We have seen that the error
in Monte-Carlo methods depends on the number of samples used, and
was estimated on the assumption that these samples were independent.
If the samples are not independent more samples are needed. Near Tc

the spatial correlation length is very large, and so is the temporal cor-
relation time of the Monte-Carlo samples—more and more Metropolis
moves are needed to obtain a spin configuration independent of the
previous one, and the cost of the calculation diverges (this is known as
“critical slowing-down”). A cure will be described in the next section.

5.6. Renormalization

Consider again a Hamiltonian system like those at the beginning
of this chapter: 2n equations for n pairs qi, pi, i = 1, . . . , n, satisfy-
ing the ordinary differential equations q̇ = ∂H/∂p, ṗ = −∂H/∂q, with
H = H(q, p) > 0. If the initial data are sampled from the density
Z−1 exp(−H/T ) these equations can be used to calculate averages of
smooth functions φ with respect to this initial density (which is invari-
ant). Alternatively, such averages can be calculated by Markov chain
Monte-Carlo.

Now suppose the functions we wish to average depend on a subset
of the variables q, p, say only on the variables q1, q2, . . . , qm, p1, . . . , pm,
with m < n; denote this set of components by q̂, p̂. Is it possible to
sample the values of q̂, p̂ without sampling the others, or solve a system
of equations for these “resolved” variables which does not involve the
others?

The equations of motion for the components of q̂, p̂ involve all the
components of q, p (or else the question has already been answered in
the affirmative). Approximate the right-hand-side of these equations
by their best approximation by a function of the q̂, p̂ we wish to calcu-
late, following the time-honored expedient of trying to approximate a
solution by first approximating the equations; this yields the system of
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equations

d

dt
q̂i = E

[
∂H

∂pi

∣∣∣∣ q̂, p̂

]
,

d

dt
p̂i = E

[
−∂H

∂qi

∣∣∣∣ q̂, p̂

]
,

for i ≤ m.
We make the following claims (these are the “Hald theorems”):

(1) This new, reduced system for the 2m resolved variables is also
Hamiltonian. Let the set of components of q not in q̂ be de-
noted by q̃, and similarly for p̃. Let i ≤ m, so that qi is in q̂.
Then

E

[
∂H

∂pi

∣∣∣∣ q̂, p̂

]
=

∫
∂H

∂pi
e−H/T dq̃ dp̃

by definition of the conditional expectation (see Chapter 2);
dq̃ denotes integration over all the components of q̃, and the
same for dp̃. The last expression equals ∂Ĥ/∂pi where

Ĥ = −T

∫
e−H/T dq̃ dp̃.

A similar identity holds for the p variables. Ĥ is a new Hamil-
tonian, the “renormalized” Hamiltonian with respect to the
partition of q, p into q̂, p̂ and q̃, p̃ (the name comes from appli-
cations in quantum theory).

(2) The normalization constant Ẑ (the partition function) for the
new Hamiltonian equals the normalization constant for the
original Hamiltonian, Ẑ = Z, as can be checked from the
definitions.

(3) The density Ŵ = Z−1 exp(−Ĥ/T ) is invariant for the reduced
system (for the same reasons that W = Z−1 exp(−H/T ) is
invariant for the old system) and Ŵ the joint density of the
resolved variables, equals their marginal density in the old sys-
tem (i.e., the density W integrated over all the variables not
in the resolved set). This is easy to see:

Z−1e−Ĥ/T = Z−1 exp

(
−

∫
e−H/T dq̃ dp̃

)
= Z−1

∫
e−H/T dq̃ dp̃.

If one wants to average only over the resolved variables one can solve
the reduced system in time, or sample the canonical density associated
with the renormalized Hamiltonian by Markov chain Monte-Carlo.
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We now apply these idea to the Ising model; for simplicity we write
things for the one-dimensional Ising model even though this model is of
no physical interest in one dimension; to make the notations consistent
we write s in place of the q of the preceding paragraphs.

First, note that the spins take discrete values and differentiation of
H with respect to the si is not obviously well defined. One can extend
the range of the spins in many ways, for example make them take values
in R, and then make the Hamiltonian Z−1 exp(−(H + K)/T ), where
K = ε−1Πi(si − 1)(si + 1). For small ε this forces the spins to take
values near +1 or −1. One can proceed with the analysis below with ε
small but finite (these are “soft” spins), and at the end of the analysis
make ε tend to zero so the spins become Ising spins.

Second, there are no momenta in the Ising Hamiltonian and no time
dependence. However, one readily checks that the Hald theorems hold
if one defines the renormalized Hamiltonian Ĥ by

∂Ĥ

∂si
= E

[
∂H

∂si

∣∣∣∣ ŝ

]
for all i ≤ m. Furthermore, the Ising model is translation invariant.
All the constructions below will be translation invariant as well, so this
last equation will be satisfied for all i if it satisfied for one of them, say
for i = 1.

The Hamiltonian for the Ising system has terms of the form sisi′ ,
where the points i and i′ are neighbors; we say that the Hamiltonian
“couples” nearest neighbors; nearest neighbors appear together in it
(but of course the solution has interactions among non-nearest neigh-
bors). A Hamiltonian of the form

∑
i sisi+j, for j fixed, is said to have

a coupling between spins j apart.
To evaluate Ĥ, start by considering a Hamiltonian more general

that the Ising Hamiltonian, of the form:

H = a1H1 + a2H2 + a3H3 + . . . , (5.6)

where the ai are constants and each “sub-Hamiltonian” Hj has only
couplings between spins j apart; one could have for example Hj =∑

i sisi+j plus powers of this last sum. Assume at first that one has
only the simplest quadratic terms just written out—these will not be
sufficient in real life but they will suffice for the explanation here. There
is no need to worry about convergence, because to start with the num-
ber of terms will be finite; indeed, if one picks H1 as H, the spin
Hamiltonian, then equation (5.6) is an identity for our H with a1 = 1
and all the other ai = 0. Now differentiate (5.6) with respect to s1,
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assumed to be part of ŝ, i.e., a variable that will be kept:

∂H

∂s1
=

∑
ajψj(s),

where ψj(s) = ∂Hj/∂s1. Applying the projection operator P defined
by Pg = E[g|ŝ] to both sides, we find

∂Ĥ

∂s1
=

∑
j

Pψj. (5.7)

With the conventions above, where ŝ included the si with i odd and
s̃ the si with i even, ψj for j even depends only on variables in ŝ,
so that the projection leaves them invariant. For j odd, one has to
calculate the inner products of ψodd with the ψeven and proceed to find
the projection as in Chapter 1; all the series converge as shown there.
Collecting terms, one finds

∂Ĥ

∂s1
=

∑
j even

âjψj,

where the âj are the coefficients found by collecting terms. It follows
that

Ĥ =
∑
j even

âjHj.

The price for reducing the number of variables is an increase in the
complexity of the Hamiltonian. One more step is needed: we now have
Ĥ as a function of the ŝi for odd values of i only. Reposition these
variables so that si, i = 2i∗ + 1 moves to si∗ . We now have spins at
the same locations as previously. The transformation which consists
in first doing (q, p) → (q̂, p̂), H → Ĥ, followed by repositioning, is an
instance of a “real-space”, or Kadanoff, renormalization group (RNG)
transformation. RNG transformations are used to simplify calculations
all over physics. If the reduction after one RNG transformation is not
sufficient, one can proceed recursively: define H(0) = H, H(1) = Ĥ,
H(2) = Ĥ(1), . . . etc.

What has been gained? In one dimension, computationally, not
much. The number of variables has been decreased but the Hamilton-
ian has become more complex, and this looks like a wash. In two (or
more) dimensions, a lot can be gained. If T is far from the critical tem-
perature, the correlations length ξ is small and a good approximation
to the statistics of a large array of spins should be computable on a
small array of spins. However, near Tc one cannot cut off the array size
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to something small without distorting the correlations; one can in ad-
dition expect critical slowing down so Monte-Carlo calculations can be
very expensive. However, each time one renormalizes, the correlation
length is reduced by a factor which depends on the size of the boxes (by
1/2 in the example above), and the temporal correlations also decrease,
so the renormalization takes one away from Tc and makes computation
easier.

For T = Tc, ξ is actually infinite; halving infinity still yields infinity.
The RNG transformations have a fixed point at Tc, and their analysis
near Tc also yields the critical exponents; this topic exceeds the scope
of the present notes. Note an analogy between these remarks and
the central limit theorem: Suppose you have a collection of random
variables and the pdf of their sum is exactly Gaussian; the pdf of
a subsum will still be Gaussian, but if the pdf of the sum is only
approximately Gaussian, the pdfs of subsums will be ever more different
from Gaussian when one makes the subsets smaller, as one can see by
reversing the process of adding variables and averaging that leads to the
central limit theorem. In this sense, RNG theory is a generalization of
the central limit theorem to a case where the variables are dependent.
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